система мониторинга

система мониторинга

2.19 система мониторинга: Совокупность процедур, процессов и ресурсов, необходимых для проведения мониторинга.

Смотри также родственные термины:

60 система мониторинга и администрирования (сетью железнодорожной электросвязи); СМА: Программно-технический комплекс управления и контроля сетевыми элементами и сетью, обеспечивающий функционирование сети с нормируемым качеством, эффективное использование всех ее ресурсов в интересах пользователей и других сетей, предупреждение отказов и сокращение времени восстановления при их возникновении, повышение производительности труда обслуживающего персонала.

Примечание - Основными функциями СМА являются: управление конфигурацией, управление устранением отказов, управление качеством, управление рабочими характеристиками, управление трафиком, управление защитой информации.


3.27 система мониторинга инженерно-технического обеспечения: Совокупность технических и программных средств, позволяющая осуществлять сбор и обработку информации о различных параметрах работы системы инженерно-технического обеспечения здания (сооружения) в целях контроля возникновения в ней дестабилизирующих факторов и передачи сообщений о возникновении или прогнозе аварийных ситуаций в единую систему оперативно-диспетчерского управления города.

Определения термина из разных документов: система мониторинга инженерно-технического обеспечения

3.26 система мониторинга инженерно-технического обеспечения: Совокупность технических и программных средств, позволяющая осуществлять сбор и обработку информации о различных параметрах работы системы инженерно-технического обеспечения здания (сооружения) с целью контроля возникновения в ней дестабилизирующих факторов и передачи сообщений о возникновении или прогнозе аварийных ситуаций в единую систему оперативно-диспетчерского управления города.

Определения термина из разных документов: система мониторинга инженерно-технического обеспечения

3.36. система мониторинга инженерных (несущих) конструкций, опасных природных процессов и явлений; СМИК: Подсистема СМИС, осуществляющая в режиме реального времени контроль изменения состояния оснований, строительных конструкций зданий и сооружений; сооружений инженерной защиты, зон схода селей, оползней, лавин в зоне строительства и эксплуатации объекта мониторинга с целью предупреждения чрезвычайных ситуаций.

3.36 система мониторинга инженерных (несущих) конструкций, опасных природных процессов и явлений; СМИК: Подсистема СМИС, осуществляющая в режиме реального времени контроль изменения состояния оснований, строительных конструкций зданий и сооружений; сооружений инженерной защиты, зон схода селей, оползней, лавин в зоне строительства и эксплуатации объекта мониторинга с целью предупреждения чрезвычайных ситуаций.

Источник: 1:

Система мониторинга инженерных систем - совокупность технических и программных средств, позволяющая осуществлять сбор и обработку информации о различных параметрах работы инженерных систем с целью передачи сообщений о возникновении или прогнозе аварийных ситуаций в Единую систему оперативно-диспетчерского управления г. Москвы.

Определения термина из разных документов: Система мониторинга инженерных систем

3.13 система мониторинга состояния гидротехнических сооружений : Совокупность измерительных приборов и других взаимодействующих технических устройств, обеспечивающих получение, передачу, сбор и обработку информации регулярных наблюдений диагностических показателей технического состояния сооружения.

Определения термина из разных документов: система мониторинга состояния гидротехнических сооружений

2.26. Система мониторинга состояния оборудования: система (машина), продуктом которой является текущая информация о техническом состоянии оборудования и его опасности с необходимыми комментариями (прогноз остаточного ресурса, предписания на неотложные действия персонала и т.д.) и заданным риском.

Определения термина из разных документов: Система мониторинга состояния оборудования

2.26. Система мониторинга состояния оборудования: система (машина), продуктом которой является текущая информация о техническом состоянии оборудования и его опасности с необходимыми комментариями (прогноз остаточного ресурса, предписания на неотложные действия персонала и т.д.) и заданным риском.

3. Обозначения и сокращения

В настоящем стандарте применены следующие сокращения.

АЧХ - амплитудно-частотная характеристика

АХ - амплитудная характеристика

ДС - диагностическая станция

МНК - методы неразрушающего контроля

НДП - недопустимо

ПТЭ - правила технической эксплуатации электроустановок потребителей

СКЗ - среднее квадратическое значение

СМ - система мониторинга

СЭВТ - средства электронно-вычислительной техники

ТДИ - таходатчик индуктивный

ТПМ - требует принятия мер

ТПТ - трансформаторный преобразователь тока

SPR - размах виброперемещения

А - виброускорение

S - виброперемещение

V - виброскорость

4. Классификация

4.1 Принципы построения систем мониторинга

4.1.1. Системы мониторинга (СМ) должны обеспечивать получение информации о состоянии оборудования (объекта мониторинга) в необходимом количестве и качестве для обеспечения наблюдаемости его технического состояния. По результатам наблюдения СМ должны заблаговременно вырабатывать управляющие воздействия, которые обеспечивают необходимый запас устойчивости технологической системы, качество ее функционирования, создают необходимый запас ее техногенной, экологической и экономической безопасности.

4.1.2. Принцип достаточности регламентирует выбор минимального числа датчиков вторичных процессов, сопровождающих работу машин, оборудования и технологической системы в целом, обеспечивающих наблюдаемость технического состояния. При этом выходной сигнал датчиков может быть представлен в широком диапазоне амплитуд и частот с последующей обработкой его в компьютере (обнаружением, фильтрацией, линеаризацией, коррекцией амплитудно-фазовых характеристик и т.д.).

4.1.3. Принцип информационной полноты отражает ограниченность наших знаний об окружающем мире и в общем виде может быть сформулирован так, что помимо известных нам диагностических признаков, описывающих техническое состояние объекта известным образом, из спектра сигнала после удаления из него известных признаков выделяют остаточный «шум», характеристики которого также используют для диагностики. При достаточно общих условиях такая система признаков почти ортогональна, т.е. каждый из признаков отражает свой класс неисправностей оборудования.

4.1.4. Принцип инвариантности регламентирует выбор и селекцию таких диагностических признаков, которые инвариантны к конструкции оборудования и форме связи с параметрами ее технического состояния, что обеспечивает применение стандартных процедур без эталонной диагностики и прогнозирования ресурса машин и, соответственно, быстрые темпы разработки и внедрения СМ, переводя их в разряд стандартных промышленных систем обеспечения безопасности оборудования и процессов.

4.1.5. Принцип самодиагностики всех измерительных и управляющих каналов СМ реализуется подачей специальных стимулирующих сигналов в цепь датчика и компьютерного анализа этого сигнала на выходе системы. Таким образом, проверяется функционирование всего тракта СМ от датчика до компьютерной программы и монитора. Реализация этого принципа обеспечивает легкий пуск систем в эксплуатацию, простоту обслуживания и ремонта отдельных каналов, высокую метрологическую и функциональную надежность системы, ее выживаемость и приспособляемость к постоянно меняющимся условиям реального производства.

4.1.6. Принцип структурной гибкости и программируемости обеспечивает реализацию оптимальной параллельно-последовательной структуры ИДС, исходя из критериев необходимого быстродействия при минимальной стоимости. Системы с параллельной сосредоточенной структурой (VME-VXI) имеют максимальное быстродействие при максимальной стоимости. Системы с последовательной распределенной структурой имеют минимальное быстродействие при минимальной стоимости. Системы с последовательно-параллельной структурой занимают промежуточное положение. Главным недостатком применения параллельных систем во взрывопожароопасных производствах является большой расход кабеля, стоимость которого соизмерима со стоимостью СМ. Выбор структуры системы (степени параллельности) требует оценки ее необходимого быстродействия. Последнее определяется скоростью деградации технического состояния диагностируемого объекта и, как показывает опыт, для насосно-компрессорного оборудования опасных производств нефтегазовой отрасли период опроса датчиков не должен превышать 5 мин.

4.1.7. Принцип коррекции неидеальностей измерительных трактов вычислительными методами на ЭВМ - нелинейности датчиков, амплитудно-фазовых характеристик согласующее преобразовательных трактов и т.д. обеспечивает высокую точность и стабильность метрологических характеристик СМ.

4.1.8. Принцип дружественности интерфейса при максимальной информационной емкости обеспечивает восприятие оператором состояния технологической системы в целом при одном взгляде на монитор и получение целеуказующего предписания на ближайшие неотложные действия. Осуществление этого принципа возможно только при наличии ЭВМ, дисплея с графическими экранами, комплексно отражающими состояние объекта и его свойств в автоматическом режиме и под управлением оператора, средств мультимедиа и встроенной экспертной системы, диагностирующей состояние машин и технологической системы в целом.

4.1.9. Принцип многоуровневой организации обеспечивает работу с системой специалистам разных уровней квалификации и ответственности, а также позволяет удовлетворять любознательность персонала по мере повышения его квалификации. На первом уровне, при работе с машинистами и слесарями, система не должна требовать от них почти никаких знаний, кроме знания клавиши «Пробел», нажатием на которую квитируют прием сообщений системы о неблагоприятном состоянии оборудования и указаний по его эксплуатации. На втором уровне, при работе с механиками и ИТР, требуется выполнение операций по управлению опциями меню для рассмотрения трендов процессов и результатов анализа сигналов, в том числе спектрального. На этом уровне работают также диагносты отделов и цехов технического надзора за состоянием оборудования. Благодаря наличию сетевой поддержки системы разных цехов объединяются в диагностическую сеть предприятия, к которой подключены компьютеры диагностов технического надзора и пользователей-руководителей - от заместителей и начальников цехов до главных механиков и инженеров производств и предприятия в целом. Такой многоуровневый контроль обеспечивает эффективное управление со стоянием оборудования и его безопасной эксплуатацией.

x002.jpg

Структурная схема системы мониторинга (СМ):

11,...,1N - N агрегатов; 21 - 2m - m диагностируемых узлов в агрегате; 31 – 3n - каналы распространения сигналов от m узлов к п датчикам; 4 - система мониторинга (СМ); 5 - блок датчиков (БД); 6 - блок согласования (БС); 7 - тракт управления (ТУ); 8 - тракт распознавания (ТР); 9 - анализатор (АС); 10 - блок формирования диагностических признаков (БФДП); 11 - блок принятия решения (БПР); 12 - блок оповещения, отображения и регистрации (БОР); 13 - блок сетевых интерфейсов (БОЛ) (Intranet/Internet); 14 - информационные базы данных и знаний (конфигурации оборудования и СМ, архивы сигналов, событий, база знаний) (БДЗ); 15 - блок управления и синхронизации (БУС)

Важная сторона при организации диагностической сети - это организация автоматизированной системы диагностических исследований в рамках всего предприятия или компании, когда в исследовательской службе автоматически накапливаются данные о состоянии оборудования и диагностических признаках, что обеспечивает постоянное развитие и совершенствование подобных систем.

4.1.10. Принцип организации производственных исполнительных систем предприятия (MES-систем) реального времени обеспечивает автоматический ввод в систему планирования ресурсов предприятия информации о состоянии оборудования, поставленной СМ, планах его ремонта т.д., обеспечивая техническое обслуживание и ремонт оборудования (ТОРО) по фактическому техническому состоянию.

4.2. Структурная схема системы

4.2.1. Общая структурная схема системы мониторинга приведена на рисунке.

4.2.2. Объект мониторинга представляет собой совокупность агрегатов 1-1,...,1-k,...,1-N, каждый из которых содержит до m узлов 2, подлежащих диагностированию. В качестве таких уз лов определяют те, которые ограничивают надежность и ресурс агрегатов и опасных производств в целом.

4.2.3. Диагностические сигналы {ζ}m = {ζ1,..., ζm} от диагностируемых узлов 2 через каналы 3 распространения колебаний Nij поступают на точки внешней поверхности агрегата и далее в систему мониторинга 4, где воспринимаются ее датчика ми 5-i, 1=I=n с использованием методов неразрушающего контроля (МНК): акустического, акустико-эмиссионного, вибродиагностического, визуально-измерительного (параметрического), вихретокового, магнитного, оптического, теплового, радиоволнового, электрического и др.

4.2.4. Анализатор сигналов 9 и блок формирования диагностических признаков 10 осуществляют преобразование массива входных сигналов в массив диагностических признаков, связанных с состоянием объектов на основе алгоритмов цифровой обработки сигналов.

4.2.5. Блок принятия решения 11 на основании входного массива диагностических признаков и эксплуатационных данных, хранящихся в информационной базе данных и знаний 14, определяет состояние объектов и выдает требуемую диагностическую информацию, и/или указания по приведению объекта в допустимое состояние.

4.2.6. Блок оповещения, отображения и регистрации 12 доводит информацию о состоянии оборудования до персонала с использованием различных каналов; визуального (дисплей системы), звукового, осуществляет распечатку протоколов (принтер системы).

4.2.7. Посредством блока сетевых интерфейсов 13 информация о состоянии оборудования передается внешним заинтересованным службам по выделенным Ethernet каналам, последовательным каналам (RS232, 485), телефонным линиям с использованием модемов.

4.2.8. Информационная база данных и знаний 14 содержит:

- базы данных конфигурации диагностируемого оборудования, конфигурации системы, базы данных значений диагностических признаков, сигналов, трендов, журналов, и других необходимых для работы системы данных;

- базы знаний, необходимые для работы экспертной системы.

4.2.9. Блок управления и синхронизации 15 осуществляет общее управление всей системой по определенному алгоритму и/или набору адаптивных алгоритмов.

4.3. Классификация систем мониторинга (СМ)

Устанавливается классификация систем мониторинга по следующим факторам:

- числу и виду используемых МНК;

- по типу экспертной системы;

- по объему выявляемых неисправностей;

- по величине статической ошибки распознавания состояния оборудования;

- по величине динамической ошибки распознавания состояния оборудования;

- по величине риска пропуска внезапного отказа;

- по числу измерительных каналов системы;

- по способу опроса датчиков;

- по архитектуре;

- по типу используемого анализатора сигналов;

- по типу индикатора состояния;

- по наличию и уровню диагностической сети;

- по типу управления.

4.3.1. Классификация по числу и виду используемых МНК

Устанавливаются следующие группы систем:

1. Комплексные системы.

2. Специализированные системы.

Специализированные системы используют один из МНК (например, согласно [13]). Комплексные системы используют набор различных МНК.

4.3.2. Классификация по типу экспертной системы

Устанавливаются следующие группы систем:

1. Системы поддержки принятия решений (ЭСППР).

2. Диагностические (ЭСД).

3. Системы индикации состояния (СИС).

Системы индикации состояния осуществляют только определение технического состояния объекта (годен/не годен), без указаний на вид неисправности.

Диагностические системы наряду с определением технического состояния должны определять одну или несколько причин (вид) неисправного состояния объекта.

Системы поддержки принятия решений включают свойства диагностических систем и должны выдавать целеуказующие предписания персоналу для предотвращения опасного состояния объекта и приведения его в нормальное состояние.

4.3.3. Классификация по объему выявляемых неисправностей

Устанавливаются следующие группы систем:

1. Широкого класса.

2. Узкого класса.

Системы узкого класса выявляют неисправности только одного узла агрегата, например подшипника.

Системы широкого класса должны выявлять неисправности раз личных узлов агрегата, а также неисправности в его работе по технологической схеме установки.

4.3.4. Классификация по величине статической ошибки распознавания состояния оборудования

Устанавливаются следующие группы систем:

1. Низкой статической ошибки.

2. Средней статической ошибки.

3. Высокой статической ошибки.

Системы низкой статической ошибки должны иметь ошибку < 5%. Системы средней статической ошибки должны иметь ошибку пре делах 5 - 30%.

Системы высокой статической ошибки имеют ошибку > 30%.

4.3.5. Классификация по величине динамической ошибки распознавания состояния оборудования

Устанавливаются следующие группы систем:

1. Низкой динамической ошибки.

2. Средней динамической ошибки.

3. Высокой динамической ошибки.

Системы низкой динамической ошибки должны иметь ошибку <5%. Системы средней динамической ошибки должны иметь ошибку в пределах 5 - 30%.

Системы высокой динамической ошибки имеют ошибку >30%.

4.3.6. Классификация по величине риска пропуска внезапного отказа

Устанавливаются следующие группы систем:

1. Низкого риска пропуска.

2. Среднего риска пропуска.

3. Высокого риска пропуска.

Системы низкого риска пропуска должны иметь величину риска пропуска внезапного отказа <5%.

Системы среднего риска пропуска должны иметь величину риска пропуска внезапного отказа в диапазоне 5 - 30%.

Системы высокого риска пропуска имеют величину риска пропуска внезапного отказа >30%.

4.3.7. Классификация по числу измерительных каналов системы

Устанавливаются следующие группы систем:

1. Многоканальные.

2. Одноканальные;

4.3.8. Классификация по способу опроса датчиков

Устанавливаются следующие группы систем:

1. Универсальные (параллельно-последовательные).

2. Параллельные.

3. Последовательные.

Последовательные системы осуществляют поочередное измерение сигналов и их обработку. Последовательные измерения могут проводиться как автоматически, так и человеком-оператором (переносные системы).

Универсальные (параллельно-последовательные) системы имеют смешанную структуру: устанавливаются группы каналов, внутри группы каналы измеряется последовательно и затем осуществляется параллельная обработка выходных сигналов групп и/или наоборот.

Параллельные системы осуществляют одновременное измерение сигналов и их последующую обработку.

4.3.9. Классификация по архитектуре

Устанавливаются следующие группы систем:

1. Распределенные.

2. Сосредоточенные.

Вся аппаратура сосредоточенной системы (за исключением датчиков) размещается в одном месте, как правило, на удалении от объекта контроля.

Аппаратура распределенной системы может размещаться непосредственно на объекте контроля.

4.3.10. Классификация по типу используемого анализатора сигналов

Устанавливаются следующие группы систем:

1. Векторные.

2. Скалярные.

В скалярных системах результатом работы анализатора сигналов являются скалярные числа (общий уровень вибрации, температура и т.д.).

Векторные системы в результате обработки информации наряду со скалярными должны выдавать одномерные и многомерные массивы, производить спектральную, корреляционную, и другую математическую обработку.

4.3.11. Классификация по типу индикатора состояния

Устанавливаются следующие группы систем:

1. Комплексные.

2. Многоуровневые.

3. Простые.

Простые индикаторы состояния имеют только функцию отображения состояния объекта.

Многоуровневые индикаторы состояния наряду с отображением состояния объекта должны иметь функции отображения состояний и параметров различных его составных частей.

Комплексные индикаторы состояния включают функции много уровневых индикаторов и должны отображать даты пуска/ останова систем и агрегатов, их наработки на разные виды ремонта, прогноз остаточного ресурса, а также выводить информацию по следующим каналам: звуковой вывод, печать протоколов, передача данных по сети (публикация на Web сервере).

4.3.12. Классификация по наличию и уровню диагностической сети

Устанавливаются следующие группы систем:

1. Автоматическая диагностическая сеть.

2. Ручная диагностическая сеть, интегрированная с переносными системами.

3. Ручная диагностическая сеть.

4. Нет диагностической сети.

Ручная диагностическая сеть обеспечивает доступ к данным стационарных систем мониторинга и диагностики с компьютеров удаленных пользователей путем ручных операций по манипуляции с адресами, поиском нужных файлов, режимами их просмотра и регистрации.

Ручная диагностическая сеть, интегрированная с переносными (персональными) системами должна обеспечивать с помощью ручных операций доступ удаленных пользователей к данным как стационарных СМ, так и переносных систем диагностики.

Автоматическая диагностическая сеть должна обеспечивать автоматическое представление на компьютерах удаленных пользователей полной информации о состоянии оборудования при одном обращении к сети, полученной как автоматическими стационарны ми СМ, так и переносными (персональными) системами диагностики. При этом представление информации на дисплее пользователя должно совпадать с представлением информации на дисплеях стационарных и переносных систем. Передача информации производится посредством выделенных и коммутируемых телефонных каналов, проводных и оптических линий Ethernet, радиоканалов.

4.3.13. Классификация по типу управления

Устанавливаются следующие группы систем:

1. Автоматические.

2. Автоматизированные.

3. Ручные.

Ручные системы выполняют большинство функций мониторинга под управлением человека-оператора.

Автоматизированные системы должны выполнять основные функции мониторинга автоматически, а вспомогательные - под управлением человека-оператора.

Автоматические системы мониторинга должны выполнять все функции мониторинга автоматически. Человек в автоматических системах может использоваться как звено управления для выдачи управляющих воздействий на объект.

4.4. Определение класса системы

4.4.1. Класс системы определяют по выражению:

x004.gif                                                                               (1)

где К - комплексный показатель, определяющий класс системы;

ПRi - произведение значений номеров пунктов подразделов

4.13.1. - 4.3.13, соответствующих свойствам системы;

Int - целая часть числа.

Системы первого класса имеют К=1.

Системы второго класса имеют К=2.

Системы третьего класса имеют К=3.

4.4.2. Пример расчета класса систем для показателей классификации, представленных выше, приведен в табл. 1.

Таблица 1

Примеры расчета класса систем

№ Вид классификации

Параметры классификации

Система 1

Система 2

Система 3

Система 4

1

По числу и виду МНК

Комплексные, специализированные (1,2)

1

1

1

2

2

По типу экспертной системы

ЭСППР, ЭСД, СИС (1.2.3)

1

2

2

3

3

По объему неисправностей

Широкого класса, узкого (1,2)

1

2

2

2

4

По статической ошибке

Низкой, средней, высокой (1,2,3)

1

1

1

1

5

По динамической ошибке

Низкой, средней, высокой (1,2,3)

1

1

2

3

6

По риску пропуска внезапного отказа

Низкий, средний, высокий (1,2,3)

1

2

3

3

7

По числу измерительных каналов

Многоканальные, одноканальные (1,2)

1

1

1

2

8

По способу опроса датчиков

Универсальные, параллельные, последовательные (1,2,3)

1

1

2

3

9

По архитектуре

Распределенные, сосредоточенные (1,2)

1

1

1

2

10

По типу анализатора сигналов

Векторный, скалярный (1,2)

1

1

1

1

11

По типу индикатора состояния

Комплексные, многоуровневые, простые (1,2,3)

1

2

2

1

12

По наличию диагностической сети

Автоматические, ручные, нет (1,2.3,4)

1

2

2

1

13

По типу управления

Автоматические, автоматизированные, ручные (1,2,3)

1

1

2

2

Произведение (П)

1

32

384

2160

log(П)+1

1.00

2.51

3.58

4,41

Класс (К)

1

2

3

4

4.5. Применение систем различных классов

4.5.1. Устанавливаются следующие категории оборудования опасных производственных объектов, оснащаемых системами мониторинга:

- оборудование первой категории, занимающее ключевые позиции в технологическом процессе и определяющее безопасность производства, внезапный отказ которого может привести к техногенной аварии (взрыву, пожару) и/или существенному снижению технико-экономических показателей производства;

- оборудование второй категории, занимающее второстепенные позиции в технологическом процессе и влияющее на безопасность производства, внезапный отказ которого может привести к снижению безопасности и технико-экономических показателей производства;

- оборудование третьей категории, решающее вспомогательные задачи.

4.5.2. Системы 1-го класса применяются для комплексного мониторинга всей технологической установки, включая объекты первой, второй и третьей категорий с возможностью автоматической блокировки опасных агрегатов и обеспечивают безопасную ресурсосберегающую эксплуатацию оборудования по фактическому техническому состоянию.

4.5.3. Системы 2-го класса применяются для мониторинга оборудования второй и третьей категорий с возможностью автоматической блокировки опасных агрегатов и обеспечивают безопасную ресурсосберегающую эксплуатацию оборудования по фактическому техническому состоянию.

4.5.4. Системы 3-го класса применяются для мониторинга оборудования третьей категории по фактическому техническому состоянию.

4.5.5. Системы 4-го и более низких классов носят вспомогательный характер.

5. Общие технические требования

5.1. Требования к датчикам и контролепригодности оборудования

5.1.1. Конструкция датчиков должна обеспечивать работоспособность и метрологические характеристики СМ в условиях реальной эксплуатации оборудования на режиме мониторинга его технического состояния.

5.1.2. Диагностируемое оборудование должно обеспечивать установку датчиков СМ без нарушений условий его безопасного функционирования в существующем технологическом процессе.

5.2. Требования к блоку оповещения, отображения и регистрации

5.2.1. Система должна иметь следующие формы представления результирующей информации: графический оконный интерфейс, звуковое предупреждение, протоколы отчетов, формируемые на принтере.

5.2.2. В СМ рекомендуется включать следующие типы экранов для представления информации:

Монитор - для представления информации о состоянии объектов мониторинга;

Тренд - для представления трендов диагностических признаков (графиков изменения во времени); анализ - для представления сигналов и результатов их цифровой обработки;

Журнал (отчет) - для представления информации «журнала механика-электрика» и «журнала событий» системы; система - для представления информации о состоянии программно-аппаратных средств системы.

5.2.3. Система должна отображать состояние всего оборудования на основе светофорных пиктограмм:

Зеленый - состояние допустимо (хорошо, отлично);

Желтый - состояние требует принятия мер;

Красный - состояние недопустимо.

5.2.4. Система должна автоматически указывать наиболее опасный агрегат и узел, ограничивающий его ресурс.

5.2.5. Система должна информировать персонал звуковым сигналом о состоянии оборудования через устройство оповещения, с автоматическим повтором до момента квитирования оператором.

5.2.6. Система должна определять характеристики физических величин, используемых в качестве диагностических признаков, и отображать их на табло, где наряду со значением признаков отображаются величины их предельных уровней и состояния по каждому выбранному субъекту диагностики.

5.2.7. Система должна выводить на принтер информацию о состоянии выбранного объекта, его трендов, спектров, протоколов технического состояния как для всего оборудования установки, так и по агрегатам, находящимся в определенном состоянии (например, недопустимо, работа, ремонт и резерв), наработок и истории ремонтов за определенный период как в целом по агрегатам, так и раздельно по рабочим машинам или приводам, протоколов событий.

5.3. Требования к информационной базе данных и знаний

5.3.1. Система должна автоматически архивировать результаты измерений и отображать графики изменения диагностических признаков во времени (тренды).

5.3.2. Система должна отображать одновременно минимум два тренда по любым, выбранным из числа измеряемых параметрам, со следующими рекомендуемыми временными интервалами (на момент обращения оператора):

12 часов    с шагом 1,5 мин;

4 суток      с шагом 12 мин;

40 суток    с шагом 2 часа;

1 год          с шагом 1 сутки;

9 лет          с шагом 7 суток

5.3.3. Система должна обеспечивать проведение анализа данных трендов при помощи курсора и информационного табло.

5.3.4. Система должна сохранять тренды и сигналы при появлении установленных событий (недопустимого значения диагностического признака или состояния объекта).

5.4. Требования к блоку управления и синхронизации

5.4.1. Система должна автоматически определять включенное (выключенное) состояние агрегатов.

5.4.2. Встроенная экспертная система должна автоматически определять и прогнозировать неисправность контролируемого оборудования и выдавать рекомендации персоналу по дальнейшим его действиям.

5.4.3. Привязка аппаратных и программных средств системы к конкретному оборудованию должна осуществляться путем кон фигурирования.

5.4.4. Система должна отображать дату и время включения (отключения) агрегата, вести подсчет общей, месячной наработки, наработки между текущими, средними и капитальными ремонтами.

5.4.5. Система должна иметь программный модуль «Журнал механика электрика» для регистрации наработок и ремонтов агрегатов, проводимых работ и замен узлов оборудования. Примеры протоколов, выдаваемых модулем приведены в справочных приложениях А, Б, В.

5.4.6. Система должна иметь «Журнал событий», фиксирующий как работу диагностируемого оборудования, так и функционирование системы мониторинга. Система должна автоматически фиксировать в журналах по возможности все действия персонала по работе с ней, в том числе факты включения-выключения, перезагрузки, попытки снятия защиты, изменения конфигурации. Пример протокола журнала событий приведен в приложении Г.

5.4.7. Система должна иметь преимущественно кнопочный интерфейс управления режимами работы (клавиатура), без необходимости точного позиционирования указателей типа «мышь», «трекбол».

5.4.8. Система может обеспечивать блокировку аварийных агрегатов по комплексу параметров, как безусловную, так и по результатам диалога с оператором.

5.4.9. Рекомендуется включать в состав СМ функции и средства противоаварийной защиты оборудования (ПАЗ), удовлетворяющие требованиям нормативных документов.

5.4.10. Система должна иметь модуль автоматической перезагрузки (WatchDog) при обнаружении нештатной работы программного обеспечения.

5.4.11. Система должна иметь программную защиту от несанкционированного доступа к функциям администрирования и настройки программных компонент (уровни доступа, пароли).

5.4.12. Программное обеспечение системы должно иметь регистрационную информацию для контроля над несанкционированным использованием.

5.5. Требования к блоку сетевых интерфейсов

5.5.1. Система должна обеспечивать обмен информацией о состоянии диагностируемого оборудования в сети систем мониторинга через выделенные линии Ethernet, радиоканалы, модемную связь.

5.5.2. Система должна иметь программные средства для публикации данных в глобальной сети Интернет (Web сервер).

5.5.3. Система должна иметь программные средства для интегрирования в SCADA системы (ОРС сервер).

5.5.4. Система должна обеспечивать поддержку сетевых компьютеров с установленным программным обеспечением систем мониторинга, находящихся в диагностической сети, для просмотра состояния, анализа сигналов и трендов параметров диагностируемого оборудования.

5.5.5. Система должна обеспечивать связь с внешними телеметрическими системами.

5.6. Метрологические требования

5.6.1. Система должна отвечать требованиям по метрологии, определяемыми требованиями нормативных документов к системам мониторинга техногенных объектов, а также используемыми в СМ методами неразрушающего контроля.

5.6.2. Системы мониторинга должны иметь сертификат об утверждении типа средств измерения в комплекте всех составных частей, включая программное обеспечение, определяющих метро логические характеристики СМ, установленной на опасном производственном объекте.

5.6.3. Допускается иметь отдельные сертификаты об утверждении типа средства измерения на составные части СМ и сертификат, подтверждающий характеристики СМ в комплекте указанных составных частей.

5.6.4. Рекомендуется предусматривать в методиках поверки СМ возможность безразборной поверки СМ в условиях эксплуатации на опасном производственном объекте.

5.6.5. Система должна обеспечивать встроенную самодиагностику или самоконтроль состояния программно-аппаратных средств, включая первичные преобразователи (датчики) и линии связи, с индикацией состояния модулей, каналы которых неисправны, на основе светофорных пиктограмм (синий цвет).

5.6.6. Система должна иметь специальные режимы для проверки, настройки измерительных каналов и анализа в них неисправностей.

5.7. Требования к конструкции

5.7.1. Конструкция составных частей систем должна обеспечивать механическую прочность и выполнение норм на электрические параметры, установленные в технических условиях на систему конкретного типа, при эксплуатации систем в заданных климатических районах и заданных взрывоопасных зонах. Требования по обеспечению взрывозащищенности устанавливаются в технических условиях на конкретную систему.

5.7.2. Конструкция составных частей систем должна обеспечивать защиту от проникновения твердых тел и воды:

- датчиков и оборудования, предназначенного для непосредственной установки на испытуемые объекты, - не хуже IP67;

- датчиков и оборудования, не предназначенного для непосредственной установки на испытуемые объекты (в производственно-технологических зонах), - не хуже IP54 ;

- оборудования, предназначенного для установки в зонах управления, - не хуже IP40.

5.7.3. Электрическое соединение составных частей систем должно производиться с использованием кабельных трасс, кабель ной трубной проводки и присоединителей (коробок ответви - тельных). Конструкцией присоединителей должна быть предусмотрена защита размещенных в них устройств, а также мест подключения кабелей от механических воздействий и иметь степень защиты от попадания пыли и влаги не хуже IP54.

5.7.4. Все металлические части составных частей систем должны иметь защиту от коррозии и старения.

5.7.5. Конструкция составных частей системы должна обеспечивать быстрый монтаж и минимальные затраты на строительно-монтажные работы, возможность проведения технического обслуживания, профилактических и ремонтных работ в процессе ее эксплуатации. Требования к монтажу, техническому обслуживанию и ремонту устанавливаются в технических условиях на конкретную систему.

5.7.6. Конструкция составных частей систем должна обеспечивать защиту от вандализма, а также от несанкционированного доступа к аппаратной части и программному обеспечению. Раз борные составные части систем должны быть опломбированы.

5.7.7. Составные части систем должны иметь габариты, не затрудняющие их транспортирование и размещение на опасном производственном объекте.

5.8. Требования к электропитанию

5.8.1. Требования к электропитанию системы в условиях эксплуатации - согласно [46].

5.8.2. В эксплуатационной документации следует устанавливать значение напряжения питания и потребляемый ток для активных датчиков-преобразователей со встроенными усилителями или модуляторами тока.

5.8.3. Система должна иметь источник бесперебойного питания для обеспечения непрерывной работы при кратковременных скачках питающего напряжения и для автоматического штатного выключения при длительном его отсутствии.

5.9. Требования надежности

5.9.1. Срок службы систем должен быть не менее 10 лет.

5.9.2. Системы должны обеспечивать непрерывную круглосуточную работу в течение срока межремонтного пробега установки. Допускается кратковременное выключение систем для обслуживания и ремонта, продолжительность которого не должна превышать интервала прогноза опасного состояния, соответствующего заданному риску пропуска отказа.

5.9.3. Параметры системы в течение всего срока службы должны оставаться в норме после устранения нарушений работоспособности.

5.9.4. Оценку фактических показателей надежности следует проводить по данным эксплуатации систем.

5.10. Требования безопасности

5.10.1. Системы мониторинга должны иметь взрывозащищенное исполнение и соответствовать требованиям [7,18,19].

5.10.2. По способу защиты обслуживающего персонала от поражения электрическим током система должна соответствовать классу 01 [33].

5.10.3. Внешние части системы, находящиеся под напряжением, превышающим 50 В по отношению к корпусу, должны иметь защиту от случайных прикосновений во время работы [70].

5.10.4. Система должна иметь заземляющие зажимы [33].

5.10.5. Разъемы, провода цепей регулирования и сигнализации следует подключать согласно маркировке только при отключенном напряжении питания.

5.10.6. При испытаниях и эксплуатации системы необходимо соблюдать требования [34].

5.10.7. В технических условиях на систему конкретного типа и в эксплуатационной документации необходимо указывать габаритные размеры и массу.

5.11. Комплектность

5.11.1. Комплектность поставки системы устанавливается в технических условиях на системы конкретного типа и должна быть достаточной для монтажа, наладки, пуска и эксплуатации в течение гарантийного срока.

5.11.2. К комплекту каждой системы должны быть приложены: руководство по эксплуатации, формуляр (паспорт), производственная инструкция, регламентирующая действия персонала при работе с системой, паспорта на составные части системы.

5.12. Маркировка

5.12.1. Маркировка составных частей системы должна содержать наименование, товарный знак предприятия-изготовителя, заводской номер, позиционное обозначение в системе.

5.12.2. Маркировку взрывозащиты, знак соответствия, а также сведения о дополнительной маркировке устанавливаются в технических условиях на конкретную систему.

5.12.3. Транспортная маркировка упаковочной тары должна быть вы полнена в соответствии с [36].

5.13. Упаковка

5.13.1. Составные части системы в упаковке должны быть рассчитаны на транспортирование любым видом наземного и воздушного транспорта и сохранять свои характеристики в пределах норм пребывания в предельных климатических условиях транспортирования [38].

5.13.2. Сопроводительная документация, прилагаемая к системе, должна быть герметично упакована в отдельный пакет и помещаться в тару.

5.13.3. Транспортная тара должна быть опломбирована.

5.13.4. Сведения о транспортной таре для составных частей устанавливаются в технических условиях на конкретную систему.

5.14. Испытания

5.13.1. Система мониторинга должна выдержать испытания на утверждение типа средств измерения, что должно быть подтверждено соответствующим сертификатом.

5.13.2. Системы мониторинга должны выдержать испытания на взрывобезопасность, что должно быть подтверждено соответствующим сертификатом.

5.13.3. При выпуске из производства системы должны выдержать непрерывные 300-часовые испытания на стенде предприятия-изготовителя.

5.13.4. В процессе эксплуатации системы должны подвергаться комплектной периодической поверке с интервалом, установленным в методике поверки.

5.13.5. Подтверждение (проверка) значения ошибки обнаружения и риска пропуска внезапного отказа осуществляется в специальных организациях при испытаниях системы в условиях, близких к эксплуатационным, либо в ходе опытной эксплуатации в реальных производственных условиях.

5.13.6. Значение ошибки пропуска внезапного отказа определяется как процент отношения числа случаев внезапных отказов оборудования, не обнаруженных системой мониторинга за определенный период времени, к общему числу случаев внезапных отказов, обнаруженных и не обнаруженных системой за тот же период времени (год).

5.13.7. Значение риска пропуска внезапного отказа определяется как процент отношения числа случаев внезапных отказов оборудования, не предотвращенных системой мониторинга с участием производственного персонала за определенный период времени, к общему числу случаев внезапных отказов, предотвращенных и не предотвращенных системой с участием персонала за тот же период времени (год).

5.15. Требования к персоналу

5.15.1. К эксплуатации автоматических СМ в режиме мониторинга допускаются лица без специального образования и квалификации (операторы, машинисты, руководители и пользователи диагностической сети заинтересованных служб), прошедшие первичное обучение по использованию системы по назначению.

5.15.2. К эксплуатации ручных и автоматизированных СМ, а также автоматических СМ в режиме проведения диагностического обследования допускаются лица, аттестованные по соответствующему МНК, в соответствии с Правилами, установленными Ростехнадзором для специалистов в области неразрушающего контроля [2].

5.15.3. Специалисты, работающие с СМ, должны быть обучены и аттестованы на знания соответствующих правил безопасности.

5.15.4. Специалисты, обслуживающие СМ или ее составные части, должны иметь сертификат на право выполнения соответствующих работ.

6. Технические требования к комплексным системам мониторинга машинного оборудования

6.1. Применяемые методы неразрушающего контроля

6.1.1. Комплексная система мониторинга состояния машинного оборудования должна реализовывать как минимум вибродиагностический, электрический и параметрический методы неразрушающего контроля.

6.1.2. Мониторинг состояния механических неисправностей агрегатов осуществляется вибродиагностическим методом не разрушающего контроля.

6.1.3. Мониторинг состояния торцовых уплотнений насосов осуществляется параметрическим методом по результатам измерения параметров затворной жидкости.

6.1.4. Мониторинг электрических неисправностей электродвигателей осуществляется вибродиагностическим и электрическим методами НК.

6.2. Требования к измеряемым параметрам

6.2.1. Система должна измерять и контролировать следующие физические параметры: виброускорение, виброскорость, виброперемещение, радиальное перемещение валов, среднее расстояние до контролируемой поверхности, температуру, постоянный и переменный ток, давление жидкости и газа, уровни жидкости, контролировать сигнал синхрометки на подвижных частях агрегата, а также параметры и характеристики напряжения переменного и постоянного тока от различных датчиков.

6.2.2. СМ должна удовлетворять требованиям соответствующих нормативных документов.

6.3. Требования к анализатору сигналов

6.3.1. Система должна измерять и контролировать один или не сколько следующих основных параметров вибросигналов:

- среднее квадратическое значение (СКЗ);

- амплитуду;

- размах.

6.3.2. Система должна отображать мгновенные значения выбранного параметра (сигнала).

Таблица 2

Перечень автоматически указываемых неисправностей машин

№ п.п. Класса

Вид неисправности

№ п.п. Класса

Вид неисправности

1

Определения термина из разных документов: Система мониторинга состояния оборудования

Система мониторинга технического состояния несущих конструкций - совокупность технических и программных средств, позволяющая осуществлять сбор и обработку информации о различных параметрах строительных конструкций (геодезические, динамические, деформационные и др.) с целью оценки технического состояния зданий и сооружений.

3.26 система мониторинга технического состояния несущих конструкций: Совокупность технических и программных средств, позволяющая осуществлять сбор и обработку информации о различных параметрах строительных конструкций (геодезические, динамические, деформационные и др.) в целях оценки технического состояния зданий и сооружений.

3.25 система мониторинга технического состояния несущих конструкций: Совокупность технических и программных средств, позволяющая осуществлять сбор и обработку информации о различных параметрах строительных конструкций (геодезические, динамические, деформационные и др.) с целью оценки технического состояния зданий и сооружений.


Словарь-справочник терминов нормативно-технической документации. . 2015.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "система мониторинга" в других словарях:

  • система мониторинга — ОКОИ должен внедрить компьютеризованную систему мониторинга медицинских случаев для поддержки системы контроля общественного здоровья во время проведения Игр и для предоставления итоговых данных по медицинскому обслуживанию в течение периода… …   Справочник технического переводчика

  • СИСТЕМА МОНИТОРИНГА — см. Мониторинг. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 …   Экологический словарь

  • Система мониторинга технического состояния несущих конструкций — совокупность технических и программных средств, позволяющая осуществлять сбор и обработку информации о различных параметрах строительных конструкций (геодезические, динамические, деформационные и др.) с целью оценки технического состояния зданий… …   Словарь-справочник терминов нормативно-технической документации

  • Система мониторинга лесных пожаров — система для оценки состояния лесных горючих материалов и прогнозов наступления и продолжительности пожароопасных сезонов и периодов. См. также: Мониторинг окружающей природной среды Противопожарное устройство лесов Финансовый словарь Финам …   Финансовый словарь

  • система мониторинга проекта — Инструмент, обеспечивающий целостность информации, которой пользуется команда МОК по управлению Играми для ежедневного мониторинга реализации проекта. [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов] EN… …   Справочник технического переводчика

  • Система мониторинга глюкозы в крови — (blood glucose monitoring system): система измерения, состоящая из портативного прибора и реактивов, используемая для наблюдения in vitro концентрации глюкозы в крови... Источник: ГОСТ Р ИСО 15197 2009. Национальный стандарт Российской Федерации …   Официальная терминология

  • Система мониторинга состояния гидротехнических сооружений — Система мониторинга состояния гидротехнических сооружений: совокупность измерительных приборов и других взаимодействующих технических устройств, обеспечивающих получение, передачу, сбор и обработку информации регулярных наблюдений диагностических …   Официальная терминология

  • система мониторинга водорода — (в помещениях АЭС) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN hydrogen monitoring systemHMS …   Справочник технического переводчика

  • система мониторинга выброса — (напр. загрязнений с дымовыми газами ТЭС) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN emission monitoring system …   Справочник технического переводчика

  • система мониторинга для выявления слабо закреплённых компонентов — (напр. оборудования ТЭС, АЭС) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN loose parts monitoring system …   Справочник технического переводчика


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»